Lecture 3

Open aft. In a metric space (x, d), a cabset $U \leq X$ is called open if it is a union of open balls.

Obs. A set U is open $\Leftrightarrow \forall r \in U, \exists$ ball $B_{\varepsilon}(x) \leqslant U_{\text {, }}$ ie. every point in U comes with an entourage.
$P_{\text {roof }} \Rightarrow$ Let $U=\bigcup B_{i \in I}$, where cache B_{i} is a ball.
Wet's first prove Xis fer one ball $B_{r}(y)$. Ter $\forall x \in B_{1}(y), \quad B_{r^{\prime}}(x) \leqslant B_{r}(y)$ for $r^{\prime}:=r-d(x, y)$. GRis hods hesse of the Δ-inegualith.
For a ypuecal $U=\bigcup_{i \in I} B_{i}$, it $x \in U$, then $x \in B_{i}$ tor sone $i \in I$, ,o $b_{\zeta}^{i \in-5}$ the above argument, $B_{r_{1}}(x) \leqslant B_{i}$ for some $r^{\prime}>0$.
\Leftrightarrow Suppose that ever z $x \in U$ woes with an entourage $B_{x} \leq U$, Then $U=\bigcup_{x \in U} B_{x}$.

Clossne paperties. In an netric space (x, l), the dans of ipen stes aclosed vuler (achitrory) unions and tinite indersection.
Proof. The lossane under union follows fion the gefinition. As for fimite interections, it is enough to sho for two sets I the rest Lllows by induction. ut $U, V \leq X$ be open suts. Fix $x \in U \cap V$.

Then $\exists r_{u}$ s.t. $B_{r_{u}}(x) \leq U$ al $\exists r_{v}$ s.t. $B_{r_{u}}(x) \leq V$. Then, letting $r:=\min \left\{v_{4}, v_{2}\right\}$, ve get $B_{r}(k) \leq U \cap V$.

Examples and nonexapbs.

- In \mathbb{R} with usual netric, the follovirs sets are ogen:
- open intervals (bourded or not)
- ang union of open intereats
- Peporition. Evez open sit in \mathbb{R} is a disgoint union of coundably wany open intervals. Proot. HW. Hint: Ctblity fillows ly finding
a unique rational in each. For the existence, prove the cols point is contained in a maximal interval.
The following ste are not open in \mathbb{R} :
- a singleton $\{\times\}$.
$-P 0\}=\bigcap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$, his is time for any pt. So cen a cha interaction of open sets andy not be open.
- $X:=[0,1)$ with the annual metic. Then
$-\left(\frac{1}{2}, 1\right)$ is open
- $\left[0, \frac{1}{2}\right.$) is open (indeed, it is a ball around 0 of radius $\frac{1}{2}$).

0 In \mathbb{R}^{2} with any p-netric, the following we open:

- open balls = circles
- open rectanges

let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be continuous. Then $\left\{(x, y) \in \mathbb{R}^{2}: y<f(x)\right\}$. $H(W$
- In da Cantor spare $2^{\text {N }}$ (or Bare space $\left(\mathbb{N}^{N}\right)$, the following we open:
- The cylinders: be a finite word $\omega \in 2^{<\mathbb{N}}$

$\left(\right.$ form $\left.M_{y}, A^{<N}:=\bigcup_{n \geqslant 0} A^{n}\right)$,
the at

$$
\begin{aligned}
{[\omega]_{2} } & :=\left\{\omega x: x \in 2^{\mathbb{N}}\right\} \\
& =\left\{y \in 2^{\mathbb{N}}: y=\omega x\right\}
\end{aligned}
$$

is open cite it's an open ball.

Set theoretic digression. $\mathbb{N} \times \mathbb{N}$ is ctbl.

An g ringlation $\{x\}$ ir not open in $2^{N N}, \mathbb{N}^{N}$.

In $X:=\{x\}$, this $\{x\}$ is open.
In $x_{i}=\{0\} \cup(1,2\},\{0\}$ is an open ball if radius 1.

Def. In a nitric space (x, d), for a set $Y \leq X$, an interior point of Y is a point y sit. $B_{\varepsilon}(y) \leq Y$ for cone $\{>0$. The interior of Y, denoted int (Y) or Y^{0}, is the set of all interior point.

Note. A set is open if it's equal to its interior.
Obs. $\forall Y \subset X$, its interior is open.
Proof. If $B_{\varepsilon}(x) \in Y$ then every point $y \in B_{\varepsilon}(x)$ is an interior point, so int (ℓ) is the union if all such $b_{a}\left(l_{s} B_{q}(k)\right.$.

Obs, In fact, int (Y) is the s-maximum open subset of Y.
Proof. Let Y^{\prime} be another open subset of Y. Then each point of Y^{\prime} is an interior point, hence $Y^{\prime} \leq \operatorname{int}(Y)$.

Examples. 0 In $\mathbb{R}, \operatorname{int}([0,1))=(0,1)$.
$0 \quad \operatorname{In}[0,1), \operatorname{int}\left(\left[0, \frac{1}{2}\right]\right)=\left[0, \frac{1}{2}\right)$.
$0 \quad I_{n} \mathbb{R}, \operatorname{int}(Q)=\varnothing, \operatorname{int}(\mathbb{R} \backslash \mathbb{Q})=\varnothing$.
0 In \mathbb{R}, let $\left\{q_{n}\right\}_{u \in \mathbb{N}}$, let $u:=\bigcup_{n \in \mathbb{N}}\left(q_{n}-2^{-n}, q_{n}+2^{-n}\right)$.
This UG open and dense
site $\mathbb{Q} \leq U$. Bat $\mathbb{R} \backslash U$ is wonenpts bare the "length" of U is is $\leq \sum_{n \in \mathbb{N}} 2^{-n}=2$. $\operatorname{int}(\mathbb{R} \backslash u)=\varnothing$ band $\varphi \geqslant \mathbb{Q}$
but the "length" of $\mathbb{R} \backslash U$ is ∞.
Terminology. A neighbourhood of a $p t x \in X$ is a set S sit. $x \in \operatorname{int}(S)$, i.e. $B_{\varepsilon}(c) \leqslant S$ for rove $\varepsilon>0$. ε-neighborhood
 An open neighbourhood is an open neighbourhood. An ε-neighbourhood of a paint is a wighbourhood contained in $B_{s}|x|$.

Def. An ivolisted point in a metric space (x, d) is a point $x \in X$ st. $\{x\}$ is open (equivalently, $\{x\}=B_{q}(x)$ for sone $\left.\varepsilon>0\right)$.
Exile. 0 in $x:=40\} \cup(1,2)$.

Def. A metric space is discrete if every point is isolated.
Examples. $0 \mathbb{N}, \mathbb{R}^{2}$ are diccicte metric space will the usual metrics.

- \mathbb{Q} is not a discrete uretic space, in fad it is perfect, ic. there are no isolated points.
- $X:=\left\{\frac{1}{h}: n \in \mathbb{N}^{+}\right\}$is discrete but there is no minimum distance Litre two point.
Doled, $d\left(\frac{1}{n}, \frac{1}{n+1}\right)<\frac{1}{n} \rightarrow 0$.
- $X:=\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}^{+}\right\}$is not discrete since O is not isolated.

Def. We call two metrics d_{1}, d_{2} on X bi-lipschitz equivalent if $\exists C, D>0$ sit.

$$
C d_{2} \leq d_{1} \leq D d_{2} \text {. Denote his by } d_{1} \sim d_{2}
$$

We call d_{1}, d_{2} equivalent if the metric space $\left(x, d_{1}\right)$ at $\left(X, d_{2}\right)$ have the same opensets. Denote this by $d_{1} \sim d_{2}$.

Obs. $\quad d_{1} \sim_{l} d_{2} \Rightarrow l_{1} \sim d_{2}$ bit the comers is tallis, tor example: $\mathbb{R} d \&$ the usual setric l $d^{\prime}:=\min \{1, d\}$. Then $d \sim d^{\prime}$ ban $d \not f_{L} d^{\prime}$.
Plot. HW.

